Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

-(1)/(2)(t-3)+t^(2)=0
How many distinct real solutions does the given equation have?
Choose 1 answer:
(A) 0
(B) 1
(c) 2
(D) 4

12(t3)+t2=0 -\frac{1}{2}(t-3)+t^{2}=0 \newlineHow many distinct real solutions does the given equation have?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 22\newline(D) 44

Full solution

Q. 12(t3)+t2=0 -\frac{1}{2}(t-3)+t^{2}=0 \newlineHow many distinct real solutions does the given equation have?\newlineChoose 11 answer:\newline(A) 00\newline(B) 11\newline(C) 22\newline(D) 44
  1. Write equation: Write down the given equation.\newlineThe equation is: 12(t3)+t2=0-\frac{1}{2}(t-3) + t^2 = 0
  2. Multiply by 2-2: Multiply both sides of the equation by 2-2 to get rid of the fraction.\newline2[12(t3)+t2]=20-2 \cdot \left[-\frac{1}{2}(t-3) + t^2\right] = -2 \cdot 0\newlineThis simplifies to: (t3)2t2=0(t-3) - 2t^2 = 0
  3. Rearrange to quadratic form: Rearrange the equation to standard quadratic form. 2t2+t3=0-2t^2 + t - 3 = 0
  4. Use discriminant: Use the discriminant to determine the number of real solutions.\newlineThe discriminant of a quadratic equation ax2+bx+cax^2 + bx + c is b24acb^2 - 4ac.\newlineFor the equation 2t2+t3-2t^2 + t - 3, a=2a = -2, b=1b = 1, and c=3c = -3.\newlineDiscriminant = b24ac=(1)24(2)(3)=124=23b^2 - 4ac = (1)^2 - 4(-2)(-3) = 1 - 24 = -23
  5. Interpret discriminant: Interpret the discriminant.\newlineSince the discriminant is negative 23 -23 , there are no real solutions to the equation.

More problems from Domain and range