Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(1252i)(13+23i)\left(\frac{1}{2}-\frac{5}{2}i\right)\left(\frac{1}{3}+\frac{2}{3}i\right)

Full solution

Q. (1252i)(13+23i)\left(\frac{1}{2}-\frac{5}{2}i\right)\left(\frac{1}{3}+\frac{2}{3}i\right)
  1. Multiply Real Parts: Multiply the real parts of the complex numbers.\newline(12)×(13)=16(\frac{1}{2}) \times (\frac{1}{3}) = \frac{1}{6}
  2. Multiply Imaginary Parts: Multiply the imaginary parts of the complex numbers and include the negative sign from the first complex number.\newline(52i)×(23i)=106×i2(-\frac{5}{2}i) \times (\frac{2}{3}i) = -\frac{10}{6} \times i^2\newlineSince i2=1i^2 = -1, we have 106×(1)=106-\frac{10}{6} \times (-1) = \frac{10}{6}, which simplifies to 53\frac{5}{3}.
  3. Multiply Mixed Parts: Multiply the real part of the first complex number with the imaginary part of the second complex number.\newline(12)×(23i)=13i(\frac{1}{2}) \times (\frac{2}{3}i) = \frac{1}{3}i
  4. Combine Results: Multiply the imaginary part of the first complex number with the real part of the second complex number.(52i)×(13)=56i (-\frac{5}{2}i) \times (\frac{1}{3}) = -\frac{5}{6}i
  5. Write Final Answer: Combine the results from steps 11, 22, 33, and 44.\newlineReal parts: 16+53=16+106=116\frac{1}{6} + \frac{5}{3} = \frac{1}{6} + \frac{10}{6} = \frac{11}{6}\newlineImaginary parts: 13i56i=26i56i=36i\frac{1}{3}i - \frac{5}{6}i = \frac{2}{6}i - \frac{5}{6}i = -\frac{3}{6}i, which simplifies to 12i-\frac{1}{2}i
  6. Write Final Answer: Combine the results from steps 11, 22, 33, and 44.\newlineReal parts: 16+53=16+106=116\frac{1}{6} + \frac{5}{3} = \frac{1}{6} + \frac{10}{6} = \frac{11}{6}\newlineImaginary parts: 13i56i=26i56i=36i\frac{1}{3}i - \frac{5}{6}i = \frac{2}{6}i - \frac{5}{6}i = -\frac{3}{6}i, which simplifies to 12i-\frac{1}{2}iWrite the final answer as a complex number.\newlineThe real part is 116\frac{11}{6} and the imaginary part is 12i-\frac{1}{2}i.\newlineSo, the product of the complex numbers is 11612i\frac{11}{6} - \frac{1}{2}i.

More problems from Multiplication with rational exponents