Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(1-(1)/(x))/(1-(1)/(x^(2)))

11x11x2 \frac{1-\frac{1}{x}}{1-\frac{1}{x^{2}}}

Full solution

Q. 11x11x2 \frac{1-\frac{1}{x}}{1-\frac{1}{x^{2}}}
  1. Understand given expression: Understand the given expression.\newlineWe have the expression (11x)/(11x2)(1-\frac{1}{x})/(1-\frac{1}{x^2}). We need to simplify this expression by performing the operations in the numerator and the denominator.
  2. Simplify numerator: Simplify the numerator.\newlineThe numerator is 1(1/x)1 - (1/x). To simplify this, we can find a common denominator, which is xx.\newline1(1/x)=(x/x)(1/x)=(x1)/x1 - (1/x) = (x/x) - (1/x) = (x - 1)/x
  3. Simplify denominator: Simplify the denominator.\newlineThe denominator is 1(1/x2)1 - (1/x^2). To simplify this, we can find a common denominator, which is x2x^2.\newline1(1/x2)=(x2/x2)(1/x2)=(x21)/x21 - (1/x^2) = (x^2/x^2) - (1/x^2) = (x^2 - 1)/x^2
  4. Rewrite original expression: Rewrite the original expression with the simplified numerator and denominator.\newlineNow we have the expression with the simplified numerator and denominator:\newline(x1)x\frac{(x - 1)}{x} / (x21)x2\frac{(x^2 - 1)}{x^2}
  5. Divide fractions: Divide the fractions.\newlineTo divide fractions, we multiply the first fraction by the reciprocal of the second fraction.\newline(x1x)×(x2x21)(\frac{x - 1}{x}) \times (\frac{x^2}{x^2 - 1})
  6. Simplify expression: Simplify the expression.\newlineWe notice that xx in the numerator of the first fraction and x2x^2 in the numerator of the second fraction can be simplified.\newlinex1x×x2x21=(x1)×(xx)×(xx21)\frac{x - 1}{x} \times \frac{x^2}{x^2 - 1} = (x - 1) \times \left(\frac{x}{x}\right) \times \left(\frac{x}{x^2 - 1}\right)\newline=(x1)×(1)×(xx21)= (x - 1) \times (1) \times \left(\frac{x}{x^2 - 1}\right)\newline=(x1)×(xx21)= (x - 1) \times \left(\frac{x}{x^2 - 1}\right)
  7. Factor denominator: Factor the denominator.\newlineThe denominator x21x^2 - 1 is a difference of squares and can be factored as (x+1)(x1)(x + 1)(x - 1).\newline(x1)(x(x+1)(x1))(x - 1) * \left(\frac{x}{(x + 1)(x - 1)}\right)
  8. Cancel common terms: Cancel out the common terms.\newlineWe have (x1)(x - 1) in both the numerator and the denominator, so we can cancel them out.\newline(x1)×x(x+1)(x1)(x - 1) \times \frac{x}{(x + 1)(x - 1)} = \frac{x}{x + 11}

More problems from Multiplication with rational exponents