Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Precalculus
Solve logarithmic equations with multiple logarithms
Find the value of
x
x
x
in the equation below.
\newline
x
+
3
=
18
x+3=18
x
+
3
=
18
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
x
−
18
=
18
x-18=18
x
−
18
=
18
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
4
=
x
7
4=\frac{x}{7}
4
=
7
x
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for
y
\mathrm{y}
y
. You must write your answer in fully simplified form.
\newline
−
4
y
=
−
5
-4 y=-5
−
4
y
=
−
5
\newline
Answer:
y
=
y=
y
=
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
x
−
5
=
3
x-5=3
x
−
5
=
3
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
7
x
=
21
7 x=21
7
x
=
21
\newline
Answer:
x
=
x=
x
=
Get tutor help
Find the value of
x
x
x
in the equation below.
\newline
5
x
=
19
5 x=19
5
x
=
19
\newline
Answer:
x
=
x=
x
=
Get tutor help
Solve for all values of
y
y
y
in simplest form.
\newline
18
=
∣
−
3
y
+
10
∣
18=|-3 y+10|
18
=
∣
−
3
y
+
10∣
\newline
Answer:
y
=
y=
y
=
Get tutor help
Solve the equation.
\newline
3.6
=
12
n
3.6=12 n
3.6
=
12
n
\newline
n
=
n=
n
=
Get tutor help
Solve the equation.
\newline
0.8
t
=
4
0.8 t=4
0.8
t
=
4
\newline
t
=
t=
t
=
Get tutor help
Evaluate the expression.
\newline
Do not round your answer.
\newline
1
3
⋅
5
+
2
=
\frac{1}{3 \cdot 5}+2=
3
⋅
5
1
+
2
=
Get tutor help
Solve the equation.
\newline
20
=
r
+
11
20=r+11
20
=
r
+
11
\newline
r
=
r=
r
=
Get tutor help
Solve the equation.
\newline
25
=
q
+
20
25=q+20
25
=
q
+
20
\newline
q
=
q=
q
=
Get tutor help
Solve the equation.
\newline
p
+
12
=
30
p+12=30
p
+
12
=
30
\newline
p
=
p=
p
=
Get tutor help
Solve the equation.
\newline
25
=
7
+
r
25=7+r
25
=
7
+
r
\newline
r
=
r=
r
=
Get tutor help
Solve the equation.
\newline
19
=
14
+
k
19=14+k
19
=
14
+
k
\newline
k
=
k=
k
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
60
−
40
y
=
60-40 y=
60
−
40
y
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
21
e
+
35
=
21 e+35=
21
e
+
35
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
24
a
−
18
b
=
24 a-18 b=
24
a
−
18
b
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
24
j
−
16
=
24 j-16=
24
j
−
16
=
Get tutor help
Apply the distributive property to factor out the greatest common factor of all three terms.
\newline
9
a
−
18
b
+
21
c
=
9 a-18 b+21 c=
9
a
−
18
b
+
21
c
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
22
c
+
33
d
=
22 c+33 d=
22
c
+
33
d
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
70
−
40
p
=
70-40 p=
70
−
40
p
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
24
+
32
p
=
24+32 p=
24
+
32
p
=
Get tutor help
Distribute to create an equivalent expression with the fewest symbols possible.
\newline
1
2
(
10
x
+
20
y
+
10
z
)
=
\frac{1}{2}(10 x+20 y+10 z)=
2
1
(
10
x
+
20
y
+
10
z
)
=
Get tutor help
Apply the distributive property to factor out the greatest common factor of all three terms.
\newline
14
x
+
21
y
+
7
z
=
14 x+21 y+7 z=
14
x
+
21
y
+
7
z
=
Get tutor help
Apply the distributive property to factor out the greatest common factor.
\newline
25
p
+
50
q
=
25 p+50 q=
25
p
+
50
q
=
Get tutor help
g
(
r
)
=
25
−
3
r
g(r)=25-3r
g
(
r
)
=
25
−
3
r
\newline
g
(
4
)
=
g(4)=
g
(
4
)
=
Get tutor help
Divide.
\newline
Write your answer in decimal form.
\newline
24
÷
15
=
24\div15=
24
÷
15
=
Get tutor help
8.01
+
24.192
=
8.01+24.192=
8.01
+
24.192
=
Get tutor help
Combine the like terms to create an equivalent expression.
\newline
6
t
+
7
−
2
+
t
=
6t+7-2+t=
6
t
+
7
−
2
+
t
=
Get tutor help
Solve for x.
\newline
2
x
−
5
=
13
2x-5=13
2
x
−
5
=
13
\newline
x
=
x=
x
=
_____
Get tutor help
h
2
−
16
h
=
0
h^2 - 16h = 0
h
2
−
16
h
=
0
Get tutor help
Solve. Simplify your answer.
log
(
z
)
+
log
(
10
)
=
1
\log(z) + \log(10) = 1
lo
g
(
z
)
+
lo
g
(
10
)
=
1
z
=
z =
z
=
____
Get tutor help
Previous
1
2